Geometria elementarna 360-MS1-2GEL
Profil kształcenia: ogólnoakademicki
Forma studiów: stacjonarne
Przedmiot obowiązkowy
Dziedzina: nauki ścisłe i przyrodnicze, dyscyplina: matematyka
Rok studiów: 2, semestr: 4
Prerekwizyty: brak
wykład 30 godz. ćwiczenia 30 godz.
Metody dydaktyczne: wykłady, ćwiczenia rachunkowe, konsultacje, praca nad literaturą, rozwiązywanie zadań domowych, dyskusje w grupach problemowych.
Punkty ECTS: 4
Bilans nakładu pracy studenta:
udział w wykładach15x2h = 30h
udział w ćwiczeniach 7x4h + 2h(instruktażu) = 30h
przygotowanie do zajęć 7x3h = 21h
dokończenie rozwiązywania zadań rozpoczętych na ćwiczeniach i opracowanie w domu notatek po odbytych zajęciach (wykładach, ćwiczeniach) 7x2h = 14h
udział w konsultacjach 5x2h = 10h
przygotowanie do egzaminu i udział w nim 15h + 4h = 19h
Wskaźniki ilościowe
nakład pracy studenta związany z zajęciami wymagającymi bezpośredniego udziału nauczyciela akademickiego: 74 godzin, 2 ECTS
nakład pracy studenta związany z zajęciami o charakterze praktycznym: 75 godzin, 3 ECTS
Rodzaj przedmiotu
Założenia (opisowo)
Koordynatorzy przedmiotu
Efekty kształcenia
Efekty kształcenia w ramach realizacji przedmiotu:
Zna aparat analitycznej geometrii afinicznej, a w szczególności:
umie wyznaczyć równania prostej, płaszczyzny i dowolnej podprzestrzeni zadanej określonymi warunkami; umie określić analitycznie położenie tych obiektów względem siebie; umie rozwiązywać problemy związane ze stosunkiem podziału, umie stosować twierdzenie Cevy i Menelaosa.
Zna podstawowe klasy przekształceń afiniczych i ich opis analityczny; umie wyznaczać przekształcenia afiniczne scharakteryzowane przez zadane proste niezmienniki.
Zna podstawowe układy pojęć charakteryzujących geometrię euklidesową (prostopadłość, przystawanie); umie ustalać wzajemne położenie sfer i podprzestrzeni afinicznych; umie za pomocą inwersji sprowadzać zagadnienia dotyczące przestzeni inwersyjnej (Moebiusa) do geometrii euklidesowej i na odwrót.
Zna i umie stosować (w prostych przypadkach) zasady klasyfikacji izometrii przestrzeni euklidesowej.
Po zrealizowaniu przedmiotu student uzyskuje podstawy metodologiczne uprawiania i uczenia się geometrii.
KA6_WG03, KA6_UW10, KA6_WG04, KA6_WG02, KA6_KK01, KA6_UU01
Kryteria oceniania
Ogólna forma zaliczenia: egzamin
Więcej informacji
Dodatkowe informacje (np. o kalendarzu rejestracji, prowadzących zajęcia, lokalizacji i terminach zajęć) mogą być dostępne w serwisie USOSweb: