Algebra II 360-MS1-2ALG2a
Course profile: academic
Form of study: stationary
Course type: facultative
Academic discipline: Mathematics, field of study in the arts and science: mathematics
Year: 2, semester: 4
Prerequisities: Algebra I, Elementary Number Theory, Linear Algebra II
lecture 30 h. exercise class 30 h.
Verification methods: lectures, exercises, consultations, studying literature, home works, discussions in groups.
ECTS credits: 5
Balance of student workload:
attending lectures15x2h = 30h
attending exercise classes 7x4h + 2h(preliminary teaching) = 30h
preparation for classes 7x3h = 21h
completing notes after exercises and lectures 7x2h = 14h
consultations 5x2h = 10h
preparation for control works 2x5h = 10h
the final examination: preparation.and take 12h + 3h = 19h
Quantitative description
Direct interaction with the teacher: 74 h., 2 ECTS
Practical exercises: 85 h., 3 ECTS
Rodzaj przedmiotu
Wymagania (lista przedmiotów)
Algebra I
Algebra liniowa I
Algebra liniowa I
Algebra liniowa II
Algebra liniowa II
Elementarna teoria liczb
Elementarna teoria liczb
Założenia (opisowo)
Koordynatorzy przedmiotu
Efekty kształcenia
Student can formulate the most important theorems of general algebra, knows the basic theorem of algebra and understands its meaning KA6_WG03.
Student knows examples of applications of general algebra methods in various branches of mathematics (for example, Fermat's little theorem in number theory) KA6_UW25.
Student is able to use the most important theorems of general algebra to solve standard problems KA6_UW25.
Student knows the basic structures and concepts of general algebra and can illustrate them with examples (permutation groups, polynomial rings, GF (p ^ n) fields) KA6_WG04.
Student knows that the known algebraic structures exist and are important in various mathematical theories and can point out a specific example of the application of general algebra in reality (e.g. cryptography) KA6_WG02, KA6_WK01, KA6_WK03.
Student notices analogies between the properties of various algebraic structures KA6_UW24.
Kryteria oceniania
The overall form of credit for the course: final exam
Literatura
1. Paul M. Cohn " Basic Algebra: Groups, Rings and Fields", Springer Science & Business Media 2004.
2. Joseph J. Rotman "A First Course in Abstract Algebra: With Applications" Pearson Prentice Hall 2006.
3. Joseph Gallian "Contemporary Abstract Algebra" Cengage Learning 2016.
4. Gregory T. Lee "Abstract Algebra: An Introductory Course" Springer 2018.
5. I. N. Herstein "Abstract Algebra" Macmillan Pub 1990.
6. David S. Dummit, Richard M. Foote" Abstract Algebra" Wiley. 1999.
7. Thomas W. Hungerford "Algebra" Springer Science & Business Media, 2003.
Więcej informacji
Dodatkowe informacje (np. o kalendarzu rejestracji, prowadzących zajęcia, lokalizacji i terminach zajęć) mogą być dostępne w serwisie USOSweb: